Eigenvalue estimates and nodal length of eigenfunctions (Q2733952)

From MaRDI portal





scientific article; zbMATH DE number 1633273
Language Label Description Also known as
English
Eigenvalue estimates and nodal length of eigenfunctions
scientific article; zbMATH DE number 1633273

    Statements

    0 references
    2 September 2001
    0 references
    Laplace operator
    0 references
    nodal sets
    0 references
    Riemann surfaces
    0 references
    Eigenvalue estimates and nodal length of eigenfunctions (English)
    0 references
    The paper under review is a nice and clear survey (without proof) of the following result: Let \(M\) be a 2-dimensional compact, smooth Riemannian manifold without boundary, and let \( \Phi \) be an eigenfunction associated to the eigenvalue \( \lambda \). Then the bound: NEWLINE\[NEWLINE \text{Length}[\Phi ^{-1}(0)] > \frac{1}{11} \text{Area}(M) \sqrt{\lambda} NEWLINE\]NEWLINE holds if \( \lambda \) is large. If the curvature of \( M \) is everywhere non-negative, then the bound holds for all eigenvalues.NEWLINENEWLINE Details can be found in Ann. Global Anal. Geom. 19, No. 2, 133--151 (2001; Zbl 1010.58025).NEWLINENEWLINEFor the entire collection see [Zbl 0966.00031].
    0 references
    0 references

    Identifiers