Eigenvalue estimates and nodal length of eigenfunctions (Q2733952)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Eigenvalue estimates and nodal length of eigenfunctions |
scientific article; zbMATH DE number 1633273
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Eigenvalue estimates and nodal length of eigenfunctions |
scientific article; zbMATH DE number 1633273 |
Statements
2 September 2001
0 references
Laplace operator
0 references
nodal sets
0 references
Riemann surfaces
0 references
Eigenvalue estimates and nodal length of eigenfunctions (English)
0 references
The paper under review is a nice and clear survey (without proof) of the following result: Let \(M\) be a 2-dimensional compact, smooth Riemannian manifold without boundary, and let \( \Phi \) be an eigenfunction associated to the eigenvalue \( \lambda \). Then the bound: NEWLINE\[NEWLINE \text{Length}[\Phi ^{-1}(0)] > \frac{1}{11} \text{Area}(M) \sqrt{\lambda} NEWLINE\]NEWLINE holds if \( \lambda \) is large. If the curvature of \( M \) is everywhere non-negative, then the bound holds for all eigenvalues.NEWLINENEWLINE Details can be found in Ann. Global Anal. Geom. 19, No. 2, 133--151 (2001; Zbl 1010.58025).NEWLINENEWLINEFor the entire collection see [Zbl 0966.00031].
0 references