Distortion theorems for polynomials on a circle (Q2736053)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Distortion theorems for polynomials on a circle |
scientific article; zbMATH DE number 1638034
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Distortion theorems for polynomials on a circle |
scientific article; zbMATH DE number 1638034 |
Statements
Distortion theorems for polynomials on a circle (English)
0 references
28 August 2001
0 references
The author considers polynomials NEWLINE\[NEWLINEP(z)= \sum^n_{k=0} c_kz^k, \quad c_n\neq 0,NEWLINE\]NEWLINE for points \(z=e^{i\varphi}\) on the unit circle. He proves new and interesting estimates for the derivatives NEWLINE\[NEWLINE{\partial\text{Re} P(e^{i \varphi}) \over\partial \varphi},\;{\partial\bigl|P(e^{i\varphi}) \bigr |^2 \over\partial\varphi} \text{ and } {\partial\arg \bigl(P(e^{i\varphi}) \bigr)\over\partial \varphi}NEWLINE\]NEWLINE using the moduli of \(c_0\) and \(c_n\) and the minimum and the maximum of the real part and of the modulus of \(P\) on the unit circle. Since most of these inequalities are to involved to be cited here, we give only two examples where the estimates are short:NEWLINENEWLINENEWLINE(1) If \(P\) is non-vanishing in the open unit disc, then NEWLINE\[NEWLINE{\partial\arg \bigl(P(e^{i\varphi}) \bigr)\over\partial \varphi}\leq{n-1\over 2}+\sqrt{{|c_n|\over 4|c_0|}}.NEWLINE\]NEWLINE (2) If all zeroes of \(P\) lie in the closed unit disc, then NEWLINE\[NEWLINE{\partial\arg \bigl(P(e^{i\varphi}) \bigr)\over\partial\varphi} \geq{n+1\over 2}-\sqrt{ {|c_0|\over 4|c_n|}}.NEWLINE\]
0 references