Extended Bell and Stirling numbers from hypergeometric exponentiation (Q2736386)

From MaRDI portal





scientific article; zbMATH DE number 1638689
Language Label Description Also known as
English
Extended Bell and Stirling numbers from hypergeometric exponentiation
scientific article; zbMATH DE number 1638689

    Statements

    0 references
    0 references
    0 references
    29 August 2001
    0 references
    extended Bell numbers
    0 references
    Stirling numbers
    0 references
    recurrence relations
    0 references
    Extended Bell and Stirling numbers from hypergeometric exponentiation (English)
    0 references
    Extended Bell numbers \(b_L(n)\) are defined by the relation NEWLINE\[NEWLINEe^{[_0F_L(z)-1]}=\sum_{n=0}^\infty b_L(n)\frac{z^n}{(n!)^{L+1}}NEWLINE\]NEWLINE where \({}_0F_L(z)=\sum_{n=0}^\infty \frac{z^n}{(n!)^{L+1}}\). The authors find recurrence relations for \(b_L(n)\), and also for Stirling type numbers \(S_L(n,l)\) defined by NEWLINE\[NEWLINE \frac{\left( {}_0F_L(z)-1\right)^l}{l!}=\sum_{n=l}^\infty \frac{S_L(n,l)}{(n!)^{L+1}}z^n,\quad L=0,1,2,\ldots.NEWLINE\]
    0 references

    Identifiers