On the rate of convergence of estimate of the unknown distribution function of the first order autoregression process (Q2736990)

From MaRDI portal





scientific article; zbMATH DE number 1645071
Language Label Description Also known as
English
On the rate of convergence of estimate of the unknown distribution function of the first order autoregression process
scientific article; zbMATH DE number 1645071

    Statements

    0 references
    11 September 2001
    0 references
    first order autoregression
    0 references
    distribution function
    0 references
    estimate
    0 references
    rate of convergence
    0 references
    On the rate of convergence of estimate of the unknown distribution function of the first order autoregression process (English)
    0 references
    Let observations of the autoregressive series \(U_k=\beta U_{k-1}+\varepsilon_k,\;k=l,\dots,n,\) be given, where \(\beta\) is an unknown nonrandom parameter and \(\varepsilon_k\) are independent, identically distributed random variables with zero mean, finite variance and unknown distribution function \(G(x)\). Let \(\hat G(x)\) be the standard estimate of \(G(x)\). The author proposes an exponential estimate from below for the probability \(P\{\sup_x\sqrt{n}|\hat{G}(x)- G(x)|>\varepsilon\}\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references