Half-inverse problems on the finite interval (Q2738850)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Half-inverse problems on the finite interval |
scientific article; zbMATH DE number 1643136
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Half-inverse problems on the finite interval |
scientific article; zbMATH DE number 1643136 |
Statements
Half-inverse problems on the finite interval (English)
0 references
26 June 2002
0 references
eigenvalue problem
0 references
inverse spectral problems
0 references
Sturm-Liouville equation
0 references
0.9348582
0 references
0.91303515
0 references
0.9094133
0 references
0.90194887
0 references
0 references
Let \(S:=\{\lambda_n\}\) be the spectrum of the boundary value problem NEWLINE\[NEWLINE -y''+p(x)y=\lambda y,\quad 0<x<1, \qquad y(0)=y(1)=0, NEWLINE\]NEWLINE where \(p(x)\) is real and continuous. Using the transformation operator method, the author provides a solution to the following inverse problems: NEWLINENEWLINENEWLINE1) given the spectrum \(S\) and \(p(x)\), \(x\in [0,1/2],\) construct \(p(x)\), \(x\in [1/2,1]\); NEWLINENEWLINENEWLINE2) given the spectrum \(S\) and the function \(p(x)-p(1-x)\), construct \(p(x)\), \(x\in [0,1]\).
0 references