On Kay's frequency estimator (Q2740046)

From MaRDI portal





scientific article; zbMATH DE number 1646467
Language Label Description Also known as
English
On Kay's frequency estimator
scientific article; zbMATH DE number 1646467

    Statements

    16 September 2001
    0 references
    hidden periodicities
    0 references
    frequency estimation
    0 references
    complex Gaussian white noise
    0 references
    consistency
    0 references
    0 references
    On Kay's frequency estimator (English)
    0 references
    The author considers the problem of estimation of \(\omega_0\) in the model \(x_t=A\exp\{i(\omega_0t+\vartheta)\}+z_t\), where \(z_t\) is a complex Gaussian white noise. Two estimators are discussed: NEWLINE\[NEWLINE\hat\omega_0=6(N(N^2-1))^{-1}\sum_{t=0}^{N-2}(t+1)(N-1-t)\angle(x_t^*x_{t+1}),NEWLINE\]NEWLINE and NEWLINE\[NEWLINE\tilde\omega_0=6(N(N^2-1))^{-1}\angle\left(\sum_{t=0}^{N-2}(t+1)(N-1-t)(x_t^*x_{t+1})\right),NEWLINE\]NEWLINE where \(\angle a\) means the phase of \(a\). It is shown that \(\hat\omega_0\) is inconsistent whence \(\tilde\omega_0\) is consistent and \(N^{3/2}(\tilde\omega_0-\omega)\) is asymptotically normal.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references