Broad band semiparametric estimation of the memory parameter of a long-memory time series using fractional exponential models (Q2740106)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Broad band semiparametric estimation of the memory parameter of a long-memory time series using fractional exponential models |
scientific article; zbMATH DE number 1646506
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Broad band semiparametric estimation of the memory parameter of a long-memory time series using fractional exponential models |
scientific article; zbMATH DE number 1646506 |
Statements
16 September 2001
0 references
long-memory time series
0 references
fractional exponential models
0 references
stationar processes
0 references
Gaussian processes
0 references
periodogram
0 references
spectral density
0 references
Broad band semiparametric estimation of the memory parameter of a long-memory time series using fractional exponential models (English)
0 references
The authors consider a Gaussian long-memory time series with spectral density NEWLINE\[NEWLINEf(\lambda)=|1-e^{-i\lambda }|^{-2d}f^*(\lambda),\quad \lambda \in [-\pi;\pi],NEWLINE\]NEWLINE where the memory parameter \(d\in (-1/2, 1/2)\) and the function \(f^*(\lambda)\) govern the long- and short-term correlation structures of the series, respectively. A semiparametric estimator of \(d\) is considered. The bias and the variance of the estimator are derived. Some of their asymptotic properties are given. A Monte Carlo study is presented.
0 references