The structure of Banach algebras \(A\), satisfying \(xAx=x^2 Ax^2\) for every \(x\in A\) (Q2740970)

From MaRDI portal





scientific article; zbMATH DE number 1642183
Language Label Description Also known as
English
The structure of Banach algebras \(A\), satisfying \(xAx=x^2 Ax^2\) for every \(x\in A\)
scientific article; zbMATH DE number 1642183

    Statements

    0 references
    0 references
    9 September 2001
    0 references
    The structure of Banach algebras \(A\), satisfying \(xAx=x^2 Ax^2\) for every \(x\in A\) (English)
    0 references
    Let \(A\) be a Banach algebra. The authors show that the following are equivalent:NEWLINENEWLINENEWLINE(1) \(xAx= x^2Ax^2\) for every \(x\in A\),NEWLINENEWLINENEWLINE(2) \(A= B\oplus R\), where \(B\) is a subalgebra of \(A\) isomorphic to \(\mathbb{C}^n\) for some \(n\geq 0\), \(xAx= (0)\) for every \(x\in R\) and \(ayx= yxa\) for every \(a\in B\) and \(x,y\in R\).NEWLINENEWLINENEWLINEAs a result, it follows that if \(Ax= Ax^2\) for every \(x\in A\) then (1) is valid.
    0 references

    Identifiers