Numerical analysis of a non-singular boundary integral method. I: The circular case (Q2744195)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Numerical analysis of a non-singular boundary integral method: Part I. The circular case |
scientific article; zbMATH DE number 1648721
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Numerical analysis of a non-singular boundary integral method. I: The circular case |
scientific article; zbMATH DE number 1648721 |
Statements
19 September 2001
0 references
boundary integral method
0 references
Dirichlet problem
0 references
potential layer
0 references
Galerkin method
0 references
stability
0 references
convergence
0 references
Laplace equation
0 references
quadrature formula
0 references
error estimates
0 references
0 references
0 references
0 references
0.94459903
0 references
0.90120316
0 references
0.8946785
0 references
0.89052856
0 references
0.89020115
0 references
0.8899803
0 references
0.8899593
0 references
Numerical analysis of a non-singular boundary integral method. I: The circular case (English)
0 references
The authors give a numerical method for solving the internal and external Dirichlet problems for the Laplacian based on a special quadrature formula for the standard piecewise linear Galerkin approximation of a weakly singular potential layer. They prove stability and give error estimates on the unit disk.
0 references