Packing circle of quasi-meromorphic functions in the unit circle (Q2744409)

From MaRDI portal





scientific article; zbMATH DE number 1648994
Language Label Description Also known as
English
Packing circle of quasi-meromorphic functions in the unit circle
scientific article; zbMATH DE number 1648994

    Statements

    0 references
    19 September 2001
    0 references
    quasi-meromorphic functions
    0 references
    unit circle
    0 references
    paking circle
    0 references
    Packing circle of quasi-meromorphic functions in the unit circle (English)
    0 references
    The author gives the definition of quasi-meromorphic functions in the unit circle. If it is an extension of the meromorphic functions, they obtain an existing theorem of the paking circle series. Let \(f(2)\) be a \(K\) quasi-meromorphic function sucht that NEWLINE\[NEWLINE\lim_{r\to 1}\sup {T(r,f) \over-\log (1-r)}= +\inftyNEWLINE\]NEWLINE then there exists a series \([z_n]\) in the unit circle such that \(B_n=[z:|(z-z_n)/ (1-zz_n)|<{1\over n}]\), are the paking circle of \(f\) with exponent \(n\).
    0 references
    0 references

    Identifiers