The number of \(k\)-digit Fibonacci numbers (Q2746561)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The number of \(k\)-digit Fibonacci numbers |
scientific article; zbMATH DE number 1656222
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The number of \(k\)-digit Fibonacci numbers |
scientific article; zbMATH DE number 1656222 |
Statements
16 September 2002
0 references
number of \(k\)-digit Fibonacci numbers
0 references
0 references
0.90290797
0 references
0 references
The number of \(k\)-digit Fibonacci numbers (English)
0 references
Define \(a(k)\) to be the number of \(k\)-digit Fibonacci numbers. Then one has \(a(k)=4\) or \(a(k)=5\) for \(k>1\). Let \(A(x,q,\ell)\) be the number of \(k\leq x\), \(k\equiv \ell\pmod q\) such that \(a(k)=5\). Then for any fixed \(q\) it is shown that \(A(x,q,\ell)\sim \frac{\alpha}{q} x\), where \(\alpha= \log 10/\log ((1+\sqrt{5})/2)-4= 0.78497\dots\;\).
0 references