Conjugacy of \(\text{Alt}_5\) and \(\text{SL}(2,5)\) subgroups of \(E_7(\mathbb{C})\) (Q2747315)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Conjugacy of \(\text{Alt}_5\) and \(\text{SL}(2,5)\) subgroups of \(E_7(\mathbb{C})\) |
scientific article; zbMATH DE number 1657499
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Conjugacy of \(\text{Alt}_5\) and \(\text{SL}(2,5)\) subgroups of \(E_7(\mathbb{C})\) |
scientific article; zbMATH DE number 1657499 |
Statements
4 February 2002
0 references
finite quasisimple groups
0 references
exceptional Lie groups
0 references
embeddings of subgroups
0 references
conjugacy of subgroups
0 references
0 references
0.9130089
0 references
0.87082684
0 references
0.8679258
0 references
0.8372598
0 references
0.83637214
0 references
0.83508855
0 references
0.8346793
0 references
Conjugacy of \(\text{Alt}_5\) and \(\text{SL}(2,5)\) subgroups of \(E_7(\mathbb{C})\) (English)
0 references
Many mathematicians solved the embedding and conjugacy problems of finite quasisimple subgroups of exceptional Lie groups (see, for example, the survey of \textit{R. L. Griess}, jun. and \textit{A. J. E. Ryba} [Bull. Am. Math. Soc., New Ser. 36, No. 1, 75-93 (1999; Zbl 0916.22008)]). The author considers the problem of classification of the \(\text{Alt}_5\) and \(\text{SL}(2,5)\) subgroups of exceptional complex Lie groups up to conjugacy. This conjugacy problem was solved by \textit{R. L. Griess}, jun. [in Invent. Math. 121, No. 2, 257-277 (1995; Zbl 0832.22013)] for \(G_2(\mathbb{C})\) and by the author [in Mem. Am. Math. Soc. 634, 1-162 (1998; Zbl 0907.22013)] for \(E_8(\mathbb{C})\) and [in J. Algebra 202, No. 2, 414-454 (1998; Zbl 0908.20036)] for \(E_6(\mathbb{C})\) and \(F_4(\mathbb{C})\). The purpose of this paper is to finish the conjugacy problem in exceptional groups (modulo a few unresolved zero-dimensional-centralizer cases) by classifying the \(\text{Alt}_5\) and \(\text{SL}(2,5)\) subgroups of \(E_7(\mathbb{C})\).
0 references