Starlike mappings of order \(\alpha\) on the unit ball in complex Banach spaces (Q2748014)

From MaRDI portal





scientific article; zbMATH DE number 1658762
Language Label Description Also known as
English
Starlike mappings of order \(\alpha\) on the unit ball in complex Banach spaces
scientific article; zbMATH DE number 1658762

    Statements

    0 references
    0 references
    0 references
    19 May 2002
    0 references
    starlike mappings
    0 references
    growth theorem
    0 references
    locally biholomorphic mapping
    0 references
    normalized biholomorphic mapping
    0 references
    Starlike mappings of order \(\alpha\) on the unit ball in complex Banach spaces (English)
    0 references
    Let \(B\) be the unit ball in a complex Banach space \(X\). The authors give the growth theorem of starlike mappings \(f:B\to X\) of order \(\alpha\), \(0<\alpha<1\): Let \(f\) be normalized. Then NEWLINE\[NEWLINE\frac{\|z\|}{(1+\|z\|)^{2(1-\alpha)}}\leq\|f(z)\|\leq \frac{\|z\|}{(1-\|z\|)^{2(1-\alpha)}}.\tag{1}NEWLINE\]NEWLINE The analytic sufficient condition for a locally biholomorphic mapping \(f:B\to X\), \(f(0) = 0\), to be a starlike mapping is also given: Assume that \(f\) satisfies one of the following two conditions: NEWLINE\[NEWLINE1/2 < \alpha < 1\quad \text{and} \quad \|(Df(z))^{-1}D^2f(z)(z,\cdot)\|<\frac{1-(2\alpha-1)\|z\|} {1+\|z\|};\tag{i}NEWLINE\]NEWLINE NEWLINE\[NEWLINE\alpha = 1/2 \quad \text{and} \quad \|(Df(z))^{-1}D^2f(z)(z,\cdot)\|<\frac{2}{1+\|z\|}. \tag{ii}NEWLINE\]NEWLINE Then \(f\) is starlike of order \(\alpha\). Moreover, if \(f\) is normalized, then (1) holds true.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references