Integral formulas for a sub-Hardy Hilbert space on the ball with complete Nevanlinna-Pick reproducing kernel (Q2748285)

From MaRDI portal





scientific article; zbMATH DE number 1659146
Language Label Description Also known as
English
Integral formulas for a sub-Hardy Hilbert space on the ball with complete Nevanlinna-Pick reproducing kernel
scientific article; zbMATH DE number 1659146

    Statements

    0 references
    0 references
    29 November 2001
    0 references
    reproducing kernel
    0 references
    Hardy space
    0 references
    Bergman kernel
    0 references
    integral representation
    0 references
    Integral formulas for a sub-Hardy Hilbert space on the ball with complete Nevanlinna-Pick reproducing kernel (English)
    0 references
    Let \(H\) be the reproducing kernel Hilbert space of holomorphic functions on the unit ball \(B\) in \(\mathbb{C}^{N}\) with reproducing kernel \(k(z,w)=(1-\langle z,w\rangle)^{-1}\). NEWLINENEWLINENEWLINEThis paper proves a series of integral representation formulas for functions in \(H\) with the Euclidean surface measure \(\sigma\), Euclidean volume measure \(\nu\) and invariant measure \(\tau\) (i.e. \(d\tau (z)= k(z,z)^{N+1} =d\nu(z) \)) on \(B\) respectively.
    0 references
    0 references

    Identifiers