Integral formulas for a sub-Hardy Hilbert space on the ball with complete Nevanlinna-Pick reproducing kernel (Q2748285)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Integral formulas for a sub-Hardy Hilbert space on the ball with complete Nevanlinna-Pick reproducing kernel |
scientific article; zbMATH DE number 1659146
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Integral formulas for a sub-Hardy Hilbert space on the ball with complete Nevanlinna-Pick reproducing kernel |
scientific article; zbMATH DE number 1659146 |
Statements
29 November 2001
0 references
reproducing kernel
0 references
Hardy space
0 references
Bergman kernel
0 references
integral representation
0 references
Integral formulas for a sub-Hardy Hilbert space on the ball with complete Nevanlinna-Pick reproducing kernel (English)
0 references
Let \(H\) be the reproducing kernel Hilbert space of holomorphic functions on the unit ball \(B\) in \(\mathbb{C}^{N}\) with reproducing kernel \(k(z,w)=(1-\langle z,w\rangle)^{-1}\). NEWLINENEWLINENEWLINEThis paper proves a series of integral representation formulas for functions in \(H\) with the Euclidean surface measure \(\sigma\), Euclidean volume measure \(\nu\) and invariant measure \(\tau\) (i.e. \(d\tau (z)= k(z,z)^{N+1} =d\nu(z) \)) on \(B\) respectively.
0 references