Global attractivity of the zero solution to a Lotka-Volterra-type functional-differential equation (Q2749015)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Global attractivity of the zero solution to a Lotka-Volterra-type functional-differential equation |
scientific article; zbMATH DE number 1663620
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Global attractivity of the zero solution to a Lotka-Volterra-type functional-differential equation |
scientific article; zbMATH DE number 1663620 |
Statements
4 September 2002
0 references
Lotka-Volterra-type functional-differential equation
0 references
square logistic equation
0 references
global attractivity
0 references
0.95404375
0 references
0.92759776
0 references
0.9274023
0 references
0.91781175
0 references
0.9154136
0 references
0.91349834
0 references
0.91349834
0 references
Global attractivity of the zero solution to a Lotka-Volterra-type functional-differential equation (English)
0 references
The authors investigate the global attractivity of the zero solution to the Lotka-Volterra-type functional-differential equation NEWLINE\[NEWLINE x'(t)+[1+x(t)]F(t,1+\lambda x(\cdot))x(\cdot))=0,\quad t\geq 0,NEWLINE\]NEWLINE where \(F\) satisfies the Yorke condition and \(0\leq \lambda \leq 1\). They obtain the \(\frac{3}{2}\)-stability result and show that when this result will be applied to the single species model NEWLINE\[NEWLINEN'(t)=N(t)[a-bN(t-\tau)-cN^2(t-\tau)],\quad t\geq 0,NEWLINE\]NEWLINE then some known results are improved.
0 references