On the completeness of the Bergman metric (Q2749023)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the completeness of the Bergman metric |
scientific article; zbMATH DE number 1663628
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the completeness of the Bergman metric |
scientific article; zbMATH DE number 1663628 |
Statements
26 January 2003
0 references
Bergman kernel
0 references
Bergman metric
0 references
completeness
0 references
Cartan-Hartogs domains
0 references
On the completeness of the Bergman metric (English)
0 references
The authors prove the following two results. NEWLINENEWLINENEWLINE(1) Let \(\Omega\subset \mathbb{C}^n\) be a complete circular domain. Suppose that \(\lambda(\Omega\cup\partial\Omega)\subset\Omega\) for \(0\leq |\lambda|<1\), and for each \(p\in \partial \Omega\), one has NEWLINE\[NEWLINE \lim_{z\rightarrow p}K_\Omega(z,z)=+\infty. NEWLINE\]NEWLINE Then \(\Omega\) is compete with respect to the Bergman metric \(\rho_\Omega\). NEWLINENEWLINENEWLINE(2) Let \(\Omega\) be a bounded domain in \(\mathbb{C}^n\). If the Bergman kernel \(K_\Omega(z,w)\) satisfies the conditions: (i) \(K_\Omega(z,w)\) is continuous on \(\Omega\times(\Omega\cup\partial\Omega)\); (ii) for every \(p\in\partial\Omega\), the Bergman kernel satisfies NEWLINE\[NEWLINE \lim_{z\rightarrow p}K_\Omega(z,z)=+\infty. NEWLINE\]NEWLINE Then \(\Omega\) is complete with respect to the Bergman metric \(\rho_\Omega\). NEWLINENEWLINENEWLINEAs an application of these two results, the authors show that Cartan-Hartogs domains are complete with respect to the Bergman metric.
0 references