On the completeness of the Bergman metric (Q2749023)

From MaRDI portal





scientific article; zbMATH DE number 1663628
Language Label Description Also known as
English
On the completeness of the Bergman metric
scientific article; zbMATH DE number 1663628

    Statements

    0 references
    0 references
    26 January 2003
    0 references
    Bergman kernel
    0 references
    Bergman metric
    0 references
    completeness
    0 references
    Cartan-Hartogs domains
    0 references
    On the completeness of the Bergman metric (English)
    0 references
    The authors prove the following two results. NEWLINENEWLINENEWLINE(1) Let \(\Omega\subset \mathbb{C}^n\) be a complete circular domain. Suppose that \(\lambda(\Omega\cup\partial\Omega)\subset\Omega\) for \(0\leq |\lambda|<1\), and for each \(p\in \partial \Omega\), one has NEWLINE\[NEWLINE \lim_{z\rightarrow p}K_\Omega(z,z)=+\infty. NEWLINE\]NEWLINE Then \(\Omega\) is compete with respect to the Bergman metric \(\rho_\Omega\). NEWLINENEWLINENEWLINE(2) Let \(\Omega\) be a bounded domain in \(\mathbb{C}^n\). If the Bergman kernel \(K_\Omega(z,w)\) satisfies the conditions: (i) \(K_\Omega(z,w)\) is continuous on \(\Omega\times(\Omega\cup\partial\Omega)\); (ii) for every \(p\in\partial\Omega\), the Bergman kernel satisfies NEWLINE\[NEWLINE \lim_{z\rightarrow p}K_\Omega(z,z)=+\infty. NEWLINE\]NEWLINE Then \(\Omega\) is complete with respect to the Bergman metric \(\rho_\Omega\). NEWLINENEWLINENEWLINEAs an application of these two results, the authors show that Cartan-Hartogs domains are complete with respect to the Bergman metric.
    0 references

    Identifiers