Explicit evaluations of a Ramanujan-Selberg continued fraction (Q2750879)

From MaRDI portal





scientific article; zbMATH DE number 1663125
Language Label Description Also known as
English
Explicit evaluations of a Ramanujan-Selberg continued fraction
scientific article; zbMATH DE number 1663125

    Statements

    Explicit evaluations of a Ramanujan-Selberg continued fraction (English)
    0 references
    0 references
    21 October 2001
    0 references
    Ramanujan-Selberg continued fraction
    0 references
    singular moduli
    0 references
    Let NEWLINE\[NEWLINES_1(q) = {q^{1/8}\over 1+}{q\over 1+} {q+q^2\over 1+}{q^3\over 1+} {q^2+q^4\over 1 +}\cdots,\qquad |q|<1.NEWLINE\]NEWLINE In this article, the author expresses \(S_1(q_n)\), \(q_n = e^{-\pi\sqrt{n}},\) in terms of the singular modulus \(\alpha_n\) defined by NEWLINE\[NEWLINE\alpha_n = 16q_n\prod_{k=1}^\infty \left(\frac{1+q_n^{2k}}{1+q_n^{2k-1}}\right)^8.NEWLINE\]NEWLINE Using known values of \(\alpha_n\) for \(n=10\) and \(n=58\), the author concludes with the evaluations of \(S_1(q_{10})\) and \(S_1(q_{58})\).
    0 references

    Identifiers