Explicit evaluations of a Ramanujan-Selberg continued fraction (Q2750879)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Explicit evaluations of a Ramanujan-Selberg continued fraction |
scientific article; zbMATH DE number 1663125
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Explicit evaluations of a Ramanujan-Selberg continued fraction |
scientific article; zbMATH DE number 1663125 |
Statements
Explicit evaluations of a Ramanujan-Selberg continued fraction (English)
0 references
21 October 2001
0 references
Ramanujan-Selberg continued fraction
0 references
singular moduli
0 references
Let NEWLINE\[NEWLINES_1(q) = {q^{1/8}\over 1+}{q\over 1+} {q+q^2\over 1+}{q^3\over 1+} {q^2+q^4\over 1 +}\cdots,\qquad |q|<1.NEWLINE\]NEWLINE In this article, the author expresses \(S_1(q_n)\), \(q_n = e^{-\pi\sqrt{n}},\) in terms of the singular modulus \(\alpha_n\) defined by NEWLINE\[NEWLINE\alpha_n = 16q_n\prod_{k=1}^\infty \left(\frac{1+q_n^{2k}}{1+q_n^{2k-1}}\right)^8.NEWLINE\]NEWLINE Using known values of \(\alpha_n\) for \(n=10\) and \(n=58\), the author concludes with the evaluations of \(S_1(q_{10})\) and \(S_1(q_{58})\).
0 references