A sphere theorem for odd-dimensional submanifolds of spheres (Q2750901)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A sphere theorem for odd-dimensional submanifolds of spheres |
scientific article; zbMATH DE number 1663146
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A sphere theorem for odd-dimensional submanifolds of spheres |
scientific article; zbMATH DE number 1663146 |
Statements
A sphere theorem for odd-dimensional submanifolds of spheres (English)
0 references
21 October 2001
0 references
submanifolds of a Riemannian manifold
0 references
Ricci curvature
0 references
mean curvature
0 references
0 references
The problem is how the topology of a submanifold of a Riemannian manifold is affected by conditions on the main intrinsic and extrinsic curvature invariants. An optimal sphere theorem is established from the viewpoint of submanifold geometry for odd-dimensional submanifolds of a unit sphere, in terms of the Ricci and mean curvatures. It is shown that the result is optimal and the assumption that the dimension is odd is essential.
0 references