Explicit merit factor formulae for Fekete and Turyn polynomials (Q2750951)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Explicit merit factor formulae for Fekete and Turyn polynomials |
scientific article; zbMATH DE number 1663194
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Explicit merit factor formulae for Fekete and Turyn polynomials |
scientific article; zbMATH DE number 1663194 |
Statements
Explicit merit factor formulae for Fekete and Turyn polynomials (English)
0 references
21 October 2001
0 references
class number
0 references
\((-1,1)\)-coefficients
0 references
merit factor
0 references
Fekete polynomials
0 references
Turyn polynomials
0 references
Littlewood polynomials
0 references
Explicit formulas are given for the \(L_4\) norm of various sequences of polynomials related to the Fekete polynomials \(f_q(z)= \sum^{q-1}_{k=1} ({k\over q})z^k\), where \(({k\over q})\) is a Legendre symbol and \(q\) is an odd prime. For example, \(\|f_q\|^4_4= {5q^2\over 3}-3q+ {4\over 3}-12 (h(-q))^2\), where \(h(-q)\) is the class number of \(\mathbb{Q}(\sqrt {-q})\).
0 references