Some congruences involving the \(p\)-adic gamma function and some arithmetical consequences (Q2751730)

From MaRDI portal





scientific article; zbMATH DE number 1665069
Language Label Description Also known as
English
Some congruences involving the \(p\)-adic gamma function and some arithmetical consequences
scientific article; zbMATH DE number 1665069

    Statements

    0 references
    29 January 2002
    0 references
    \(p\)-adic gamma function
    0 references
    binomial coefficients
    0 references
    congruences
    0 references
    Some congruences involving the \(p\)-adic gamma function and some arithmetical consequences (English)
    0 references
    Let \(\Gamma_p\) be the \(p\)-adic gamma function, \(p>5\). The author proves the congruence NEWLINE\[NEWLINE \Gamma_p(p^rx)\equiv \Gamma_p(p^r)^x\left[ 1+\frac{x(x^2- 1)}3p^r\sum\limits_{\underset {(k,p)=1}{k=1}}^{p^r}\frac{1}k\right]\pmod{p^{5r}\mathbb Z_p} NEWLINE\]NEWLINE where \(r\) is a positive integer, \(x\in \mathbb Z_p\). This implies several new congruences for binomial coefficients.NEWLINENEWLINEFor the entire collection see [Zbl 0969.00058].
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references