On rational curves in \(n\)-space with given normal bundle (Q2752203)

From MaRDI portal





scientific article; zbMATH DE number 1665498
Language Label Description Also known as
English
On rational curves in \(n\)-space with given normal bundle
scientific article; zbMATH DE number 1665498

    Statements

    5 March 2002
    0 references
    rationality of strata
    0 references
    space of unparametrized rational curves
    0 references
    stratification
    0 references
    0 references
    On rational curves in \(n\)-space with given normal bundle (English)
    0 references
    Let \(\widetilde S^n_d\) denote the space of unparametrized rational curves of degree \(d\) immersed in \(\mathbb{P}^n\), that is, degree \(d\) immersions \(f:\mathbb{P}' \to\mathbb{P}^n\) modulo \(\mathbb{P}\text{GL}(2)\) actions on \(\mathbb{P}'\). The author gives a stratification of the space \(\widetilde S^n_d\) according to the type of normal bundle of each curve. The strata are than birationally vector bundles over the strata of \(\widetilde S^2_d\). By a result of Kim and Pandharipande \(\widetilde S^2_d\) is known to be rational. The author thereby concludes that all components of the strata of \(\widetilde S^n_d\) which dominate \(\widetilde S^2_d\) are rational.NEWLINENEWLINEFor the entire collection see [Zbl 0966.00024].
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references