Nonlinear singular integrals depending on two parameters (Q2752311)

From MaRDI portal





scientific article; zbMATH DE number 1660801
Language Label Description Also known as
English
Nonlinear singular integrals depending on two parameters
scientific article; zbMATH DE number 1660801

    Statements

    0 references
    0 references
    25 August 2002
    0 references
    nonlinear integral operators
    0 references
    pointwise convergence
    0 references
    locally compact groups
    0 references
    Haar measure
    0 references
    Natanson lemma
    0 references
    Nonlinear singular integrals depending on two parameters (English)
    0 references
    Let \(G\) be a locally compact abelian group with the Haar measure \(dt\), and \(W\) be a set of indices with any topology. Let \(\{K_w\}_{w\in W}\) be a family of functions \(K_w: G\times \mathbb R\to \mathbb R\) with \(K_w(t,0)=0\). The authors discuss conditions guaranteeing the convergence of the integral operators, \(\int_G K_w(s-t, f(t)) dt \to f(s_0)\) as \((w,s)\to (w_0, s_0)\). Several examples are given. One of them is : \(K_n(t,u)=\frac{nu}{2}+\sin\frac{nu}{2}\) \((-\frac 1n \leq t\leq \frac 1n)\), \(=0\) \((t\in [-\pi, \pi]\setminus [-\frac 1n, \frac 1n])\), where \(G=[-\pi,\pi)\) and \(W=\mathbb N\).
    0 references
    0 references

    Identifiers