Ratio limit theorems for self-adjoint operators and symmetric Markov chains (Q2752953)

From MaRDI portal





scientific article; zbMATH DE number 1665888
Language Label Description Also known as
English
Ratio limit theorems for self-adjoint operators and symmetric Markov chains
scientific article; zbMATH DE number 1665888

    Statements

    0 references
    22 October 2001
    0 references
    ratio limit theorem
    0 references
    self-adjoint operator
    0 references
    Harris recurrent Markov chain
    0 references
    symmetric kernel
    0 references
    quasi-Feller kernel
    0 references
    Liouville kernel
    0 references
    Ratio limit theorems for self-adjoint operators and symmetric Markov chains (English)
    0 references
    Standard ratio limit theorems for Markov chains on measurable spaces include either excessive conditions or conditions which, despite their closeness to the necessary ones, are difficult to check. On the other hand, an important and elegant \textit{S. Orey} theorem [``Lecture notes on limit theorems for Markov chain transition probabilities'' (London, 1971)] dealing with discrete symmetric Markov chains does not contain conditions of such a kind. The author establishes two theorems of Orey type for symmetric Harris recurrent Markov chains and symmetric quasi-Feller topological Liouville kernels. Similar statements are proved for nonnegative symmetric quasi-Feller kernels on locally compact spaces which are Liouville in a certain sense. The idea of proofs is based on a new simple limit theorem for ratios generated by some self-adjoint operators.
    0 references

    Identifiers