Remarks on a fixed point problem of Ben-El-Mechaiekh (Q2753297)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Remarks on a fixed point problem of Ben-El-Mechaiekh |
scientific article; zbMATH DE number 1667851
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Remarks on a fixed point problem of Ben-El-Mechaiekh |
scientific article; zbMATH DE number 1667851 |
Statements
28 July 2002
0 references
fixed point
0 references
generalized convex space
0 references
polytope
0 references
concidence theorem
0 references
compact \(G\)-convex space
0 references
0.8815117
0 references
0.87554926
0 references
Remarks on a fixed point problem of Ben-El-Mechaiekh (English)
0 references
The author and \textit{H. Kim} proved [J. Math. Anal. Appl. 197, No. 1, 173-187 (1993; Zbl 0851.54039)] the folloing coincidence theorem: NEWLINENEWLINENEWLINETheorem. Let \((X,D;\Gamma)\) be a compact \(G\)-convex space, and \(S: X\to D,\) \(T: X\to X\) maps such that NEWLINENEWLINENEWLINE(i) for each \(x\in X,\) \(M\in \langle Sx\rangle\) implies \(\Gamma_{M}\subset Tx\) and NEWLINENEWLINENEWLINE(ii) \(X=\cup\{\operatorname {Int} S^{-}y: y\in D\}.\) NEWLINENEWLINENEWLINEThen \(T\) has a fixed point \(x_{0}\in X;\) that is, \(x_{0}\in Tx_{0}.\) NEWLINENEWLINENEWLINE\textit{H. Ben-El-Mechaiekh} [Bull. Aust. Math. Soc. 41, No. 3, 421-434 (1990; Zbl 0685.54030); Quest. Answers Gen. Topology 10, No. 2, 153-156 (1992; Zbl 0803.54038)] raised for the case \(X=D\) is a convex subset of a topological vector space and \(\Gamma_{M}=\infty\) for \(M\in \langle X\rangle\) the following Problem: NEWLINENEWLINENEWLINEDoes Theorem hold if we assume \(T\) is compact instead of the compactness of \(X?\) NEWLINENEWLINENEWLINEThis problem is still open. In this paper the author gives partial solutions of this problem.NEWLINENEWLINEFor the entire collection see [Zbl 0969.00060].
0 references