Gravitation: the spacetime structure. Proceedings of the 8th Latin American Symposium on Relativity and Gravitation (SILARG VIII) held in Águas de Lindóia, Brazil, July 25--30, 1993 (Q2753369)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Gravitation: the spacetime structure. Proceedings of the 8th Latin American Symposium on Relativity and Gravitation (SILARG VIII) held in Águas de Lindóia, Brazil, July 25--30, 1993 |
scientific article; zbMATH DE number 1667996
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Gravitation: the spacetime structure. Proceedings of the 8th Latin American Symposium on Relativity and Gravitation (SILARG VIII) held in Águas de Lindóia, Brazil, July 25--30, 1993 |
scientific article; zbMATH DE number 1667996 |
Statements
1 November 2001
0 references
Águas de Lindóia (Brazil)
0 references
Proceedings
0 references
Symposium
0 references
SILARG VIII
0 references
Gravitation
0 references
Gravitation: the spacetime structure. Proceedings of the 8th Latin American Symposium on Relativity and Gravitation (SILARG VIII) held in Águas de Lindóia, Brazil, July 25--30, 1993 (English)
0 references
The articles of this volume will not be indexed individually. The preceding symposium (6th, 1988) has been reviewed (see Zbl 0644.00017).NEWLINENEWLINENEWLINEContents: E. P. S. Shellard, Cosmic strings \& their observational consequences (3-49); Pertti Lounesto, Clifford algebras, relativity and quantum mechanics (50-81); Richard Matzner, Computational relativity (82-109); Kayll Lake, Some notes on the use of computer algebra for the study of nakedly singular spacetimes (110-142); M. Rosenbaum and J. Mucino, Symmetry and reduced Hamiltonian methods in gauge theories (145-151); G. M. Covarrubias, Lie group of transformations techniques in Brans and Dicke theory (152-155); V. B. Bezerra and E. R. Bezerra de Mello, Induced quantum number in the fermion-vortex system on a cone (156-161); D. Nunez and H. Quevedo, Dimensional reduction of the Einstein-Hilbert Lagrangian (162-166); J. Guven, Deformations of topological defects (167-171); F. M. Peixoto and M. A. F. Rosa, On Thirring's approach to Mach's principle: criticisms and speculations on extensions of his original work (172-178). Q. A. G. de Souza and W. A. Rodrigues jun., The Dirac operator and the structure of Riemann-Cartan-Weyl spaces (179-212);NEWLINENEWLINENEWLINEJ. Vaz jun. and W. A. Rodrigues jun., About the equations of electromagnetism and quantum mechanics (213-219); D. L. Rapoport Campodonico, The Cartan structure of quantum and classical gravity (220-229); V. L. Figueiredo, Clifford algebra approach to the Cayley-Klein matrices (230-236); D. Sudarsky, Properties of old and new black hole spacetimes (237-250); J. Santos, M. J. Reboucas and A. F. F. Teixeira, Classification of the Ricci tensor in \(5\)-dimensional spacetimes (251-258); A. L. Trovon de Carvalho, Zeeman topologies for semi-Riemannian affine spaces with nonzero signature (259-266); J. W. Maluf, Zero curvature condition in general relativity: teleparallel description in canonical form (267-271); A. I. Shimabukuro and M. A. F. Rosa, Closed formulas for the exponentiation of Lie algebra elements and applications to Kaluza-Klein theories (272-282); V. Tapia, The high-energy structure of space-time: fourth-rank geometry (283-287). H. Quevedo, Linear transformations of the Einstein-Maxwell equations (291-296); P. S. Letelier and V. T. Zanchin, Sigma models and cosmic string fluids with heat flow (297-303);NEWLINENEWLINENEWLINEH. Salazar and R. Cordero, Exact solutions of the Einstein-Born-Infeld equations with perfect fluid (304-308); R. J. Gleiser, C. O. Nicasio and A. Garate, Solitonic solutions of the Einstein-Maxwell equations with cylindrical-spherical symmetry (309-314); P. R. Holvorcem and P. S. Letelier, On the stability of cosmic strings (315-319); P. S. Letelier and Anzhong Wang, Dynamical Lorentz wormholes (320-324); J. F. Plebanski, H. Garcia-Compean and A. Garcia, Real Einstein spaces constructed via linear superposition of complex gravitational fields (325-331); P. S. Letelier and Anzhong Wang, Cosmic bubbles and rotating black holes (332-338); E. Gueron and P. S. Letelier, Weyl solutions: solitons, strings and struts (339-345); G. A. Giraldi and P. S. Letelier, Bifurcation of gravitational waves (346-351); E. Recami, F. Raciti, W. A. Rodrigues jun. and V. T. Zanchin, Micro-universes and ''strong black-holes'': a purely geometric approach to elementary particles (355-372); R. L. Monaco, G. G. Cabrera and W. A. Rodrigues, Jr., A quantum spin-orbit gravitational coupling (373-377); L. C. Garcia de Andrade and C. Sivaran, Spin-torsion effects in the Stern-Gerlach experiment (378-380); E. Capelas de Oliveira and E. A. Notte Cuello, Solutions for the equations associated with the Casimir operators of the Fantappie-de Sitter group (381-391); A. Macias, G. German and O. Obregon, Kaluza-Klein theories of gravity with torsion (392-399);NEWLINENEWLINENEWLINEL. F. Urrutia, The relation between the Mandelstam and the Cayley-Hamilton identities: their extension to the case of supermatrices (400-406); T. Matos and N. Breton, \(5\)D model for the magnetosphere of rotating bodies (407-411); C. A. Lopez, Lagrangian formulation of a gravitational vector field (412-416); M. Banados, Black holes in Einstein-Lovelock gravity (417-421); V. O. Rivelles, Topological dilatonic supergravity (422-426). O. Obregon, A. Macias and J. Socorro, Matrix approach to supersymmetric quantum cosmology (429-435); R. R. A. Sussman, Asymptotically FRW inhomogeneous cosmologies with bulk viscosity and heat conduction (436-441); S. Lepe and S. Del Campo, Cosmic scale factors in higher dimension (442-445); J. Socorro, O. Obregon and J. Benitez, Fermionic terms in super-quantum cosmology? (446-451); H. N. Nunez Yepez, A. L. Salas-Brito and R. A. Sussman, Chaos in geodesic congruences (452-456); R. Carretero-Gonzalez, H. N. Nunez Yepez and A. L. Salas-Brito, Chaotic behaviour in JBD cosmology (457-461); F. D. Mazzitelli, Fate of singularities in two-dimensional dilaton gravity (462-466); J. Guven and M. P. Ryan, Jr., The quantum Taub model with a cosmological constant (467-471); J. Frieman, D. Harari and G. Surpi, Effects of cosmological gravitational waves upon gravitational lens time delays (472-477); J. A. S. Lima and J. M. F. Maia, Deflation with decaying vacuum energy density (478-483). V. M. Villalba, Spinor field in a nonstationary Godel-type cosmological universe (484-488); P. Chauvet, J. Cervantes and H. N. Nunez Yepez, Stable FRW cosmological solution against anisotropic perturbations in Brans-Dicke theory (489-493); M. Castagnino and R. Laura, The cosmological essence of time asymmetry (494-499);NEWLINENEWLINENEWLINEJ. A. Nogueira and A. Maia jun., Generalized Zeldovich's regularization of the vacuum energy (500-504); M. G. Ale, L. P. Chimento and A. S. Jakubi, Self-consistent solutions of the semiclassical Einstein-Dirac equations with cosmological constant (505-509); L. P. Chimento and A. S. Jakubi, Evolution of a universe filled with a causal viscous fluid (510-515); M. Cataldo, K. K. Kumaradtya and N. V. Mitskievitch, The pencil of light in the Melvin-Bonnor universe (516-520); C. Aragone, P. J. Arias and A. Khoudeir, Light-front dynamics of massive vector Chern-Simons gravity (523-528); C. Aragone and A. Khoudeir, Massive triadic Chern-Simons spin-\(3\) theory (529-533); W. A. Rodrigues, Jr., Q. A. G. de Souza and J. Vaz, Jr., Lagrangian formulation in the Clifford bundle of Dirac-Hestenes equation on a Riemann-Cartan spacetime (534-543). J. R. Zeni, The theory of electron: a comment on recent results (544-552); C. Aragone and P. J. Arias, More gravitational anyons (553-559); R. Torrealba and A. Restuccia, Off-shell BRST quantization of membranes and boundary conditions (560-565); G. E. A. Matsas and C. B. Peres, Physical detectors and the Fulling-Davies-Unruh effect (566-569); J. A. Nogueira and A. Maia, Jr., Zero-point anomaly (570-574); N. Breton and T. Matos, Colliding plane gravitational waves as harmonic maps (577-581); F. Aguirre et al., ESFERAS: an algebraic, numerical and visual environment for radiating spheres in general relativity (582-586); G. Contreras, A. Melfo, L. A. Nunez and U. Percoco, Algebraic computing and collineations in a Friedmann-like collapsing configuration (587-591).
0 references