Fourier integral transforms with spectral parameter on piecewise-homogeneous Cartesian axis (Q2753485)

From MaRDI portal





scientific article; zbMATH DE number 1670301
Language Label Description Also known as
English
Fourier integral transforms with spectral parameter on piecewise-homogeneous Cartesian axis
scientific article; zbMATH DE number 1670301

    Statements

    0 references
    0 references
    11 November 2001
    0 references
    hybrid Fourier transform
    0 references
    conjugation point
    0 references
    spectral parameter
    0 references
    Cauchy kernel
    0 references
    Fourier integral transforms with spectral parameter on piecewise-homogeneous Cartesian axis (English)
    0 references
    Hybrid Fourier integral transforms with one and two conjugation points for differential operators \({\mathcal L}_1 = [a_1^2\theta(-x) + a_2^2\theta(x)]d^2/dx^2\), \({\mathcal L}_2 = [a_1^2\theta(l_1-x) + a_2^2\theta(x-l_1)\theta(l_2-x) + a_3^2\theta(x-l_2)]d^2/dx^2\) are considered. Here \(\theta\) is the Heaviside step function, \(a_j>0\). It is assumed that the spectral parameter enters the conjugation conditions at points \(a_j\). For derivation of integral transforms the delta-like Cauchy sequences are used. These sequences are given by the Cauchy kernels, i.e., fundamental matrices of solutions of the Cauchy problem for equations of heat conduction of parabolic type corresponding to the operators \({\mathcal L}_1,{\mathcal L}_2\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references