A Grushko theorem for 1-acylindrical splittings (Q2754269)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A Grushko theorem for 1-acylindrical splittings |
scientific article; zbMATH DE number 1670923
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A Grushko theorem for 1-acylindrical splittings |
scientific article; zbMATH DE number 1670923 |
Statements
11 November 2001
0 references
amalgamated free products
0 references
malnormal subgroups
0 references
rank of groups
0 references
0.8677717
0 references
0.84579086
0 references
0.8450123
0 references
0.83129364
0 references
0.8273228
0 references
0.82693636
0 references
0.8257052
0 references
A Grushko theorem for 1-acylindrical splittings (English)
0 references
Let \(G=A*_CB\) be the free product with amalgamated subgroup \(C\). Assume that \(C\) is malnormal, that is, \(gCg^{-1}\cap C=\{1\}\) for all \(g\in G\setminus C\). It is known that the formula NEWLINE\[NEWLINE\text{rank }G\geq\text{rank }A+\text{rank }B-\text{rank }CNEWLINE\]NEWLINE fails in general.NEWLINENEWLINENEWLINEFor instance, if \(G\) is given with \(A=\langle s_1,s_2,s_3\mid s^2_1=s^2_2=s^2_3=1\rangle\), \(B=\langle s_4,s_5,s_6\mid s^2_4=s^2_5=s^2_6=1\rangle\) and \(C=\langle s_1s_2s_3\rangle=\langle(s_4s_5s_6)^{-1}\rangle\cong\mathbb{Z}\) then \(C\) is malnormal, \(\text{rank }A=\text{rank }B=3\) and \(\text{rank }C=1\) but \(\text{rank }G=4\).NEWLINENEWLINENEWLINEHere, the author shows the remarkable fact that NEWLINE\[NEWLINE\text{rank }G\geq\tfrac 13(\text{rank }A+\text{rank }B-2\text{rank }C+5).NEWLINE\]
0 references