Pointwise inequalities of Landau-Kolmogorov type for functions defined on a finite segment (Q2754798)

From MaRDI portal





scientific article; zbMATH DE number 1668424
Language Label Description Also known as
English
Pointwise inequalities of Landau-Kolmogorov type for functions defined on a finite segment
scientific article; zbMATH DE number 1668424

    Statements

    0 references
    4 November 2001
    0 references
    Landau-Kolmogorov inequality
    0 references
    Pointwise inequalities of Landau-Kolmogorov type for functions defined on a finite segment (English)
    0 references
    For arbitrary \(t\in [0,1]\), \(p\in [1,\infty ]\) and \(A\geq 2\) the author finds the best possible constant \(B\) in the inequality NEWLINE\[NEWLINE |x'(t)|\leq A\|x\|_{L_\infty [0,1]}+B\|x''\|_{L_p(0,1)}. NEWLINE\]NEWLINE This leads to the precise inequality for the norms NEWLINE\[NEWLINE \|x'\|_\infty \leq \frac{2}{h}\|x\|_\infty +\left( \frac{h}{p'+1}\right)^{1/p'}\|x''\|_p NEWLINE\]NEWLINE valid for any \(x\in L_\infty^2\), \(0<h\leq 1\).
    0 references

    Identifiers