Pointwise inequalities of Landau-Kolmogorov type for functions defined on a finite segment (Q2754798)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Pointwise inequalities of Landau-Kolmogorov type for functions defined on a finite segment |
scientific article; zbMATH DE number 1668424
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Pointwise inequalities of Landau-Kolmogorov type for functions defined on a finite segment |
scientific article; zbMATH DE number 1668424 |
Statements
4 November 2001
0 references
Landau-Kolmogorov inequality
0 references
Pointwise inequalities of Landau-Kolmogorov type for functions defined on a finite segment (English)
0 references
For arbitrary \(t\in [0,1]\), \(p\in [1,\infty ]\) and \(A\geq 2\) the author finds the best possible constant \(B\) in the inequality NEWLINE\[NEWLINE |x'(t)|\leq A\|x\|_{L_\infty [0,1]}+B\|x''\|_{L_p(0,1)}. NEWLINE\]NEWLINE This leads to the precise inequality for the norms NEWLINE\[NEWLINE \|x'\|_\infty \leq \frac{2}{h}\|x\|_\infty +\left( \frac{h}{p'+1}\right)^{1/p'}\|x''\|_p NEWLINE\]NEWLINE valid for any \(x\in L_\infty^2\), \(0<h\leq 1\).
0 references