New integral representations for a hypergeometric function (Q2754804)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: New integral representations for a hypergeometric function |
scientific article; zbMATH DE number 1668428
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | New integral representations for a hypergeometric function |
scientific article; zbMATH DE number 1668428 |
Statements
4 November 2001
0 references
hypergeometric function
0 references
spherical function
0 references
symmetric space
0 references
New integral representations for a hypergeometric function (English)
0 references
The authors obtain an integral representation of the function NEWLINE\[NEWLINE \varphi_\lambda^{(\alpha ,\beta)}(r)=F\left( \frac{\alpha +\beta +1+i\lambda }{2},\frac{\alpha +\beta +1-i\lambda }{2};\alpha +1; -\sinh^2 r\right),\;r>0, NEWLINE\]NEWLINE where \(F\) is the Gauss hypergeometric function, \(\lambda \in \mathbb C\), \(\beta >-1/2\), \(\alpha -\beta\in \mathbb Z_+\). An asymptotic expansion of \(\varphi_\lambda^{(n,1)}(r)\) (\(n\in \mathbb N\)) for \(\lambda \to \infty\) is also found. These functions can be interpreted as generalized spherical functions on some non-compact symmetric spaces.
0 references