New estimates of Whitney constants for \(k\leq 1000\) (Q2755271)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: New estimates of Whitney constants for \(k\leq 1000\) |
scientific article; zbMATH DE number 1669746
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | New estimates of Whitney constants for \(k\leq 1000\) |
scientific article; zbMATH DE number 1669746 |
Statements
8 November 2001
0 references
estimates
0 references
Whitney constant
0 references
algebraic polynomials
0 references
0.8698979
0 references
0 references
0.8410605
0 references
0.83845377
0 references
0.8291914
0 references
New estimates of Whitney constants for \(k\leq 1000\) (English)
0 references
For a function \(f\in C([0,1])\) let us denote NEWLINE\[NEWLINE\Delta_{h}^{k}(f,x)= \sum\limits_{j=0}^{k}(-1)^{k-1}{k\choose j}f(x+jh)NEWLINE\]NEWLINE and NEWLINE\[NEWLINE\omega_{k} (1/k;f)=\sup\limits_{x,x+kh\in[0,1]}|\Delta_{h}^{k}(f,x)|.NEWLINE\]NEWLINE The constant NEWLINE\[NEWLINEW_{k}=\sup\limits_{f\in C([0,1])}\inf\limits_{p\in P_{k-1}} {\|f-p\|_{C([0,1])}/\omega_{k}(1/k;f)},\;k\in\mathbb{N},NEWLINE\]NEWLINE is called Whitney constant, where \(P_{k-1}\) is a space of algebraic polynomials of degree less or equal to \(k-1\). The author proves that \(W_5<1.28, W_6<1.32, W_{k}<1.4\) for \(k\leq 10, W_{k}<1.5\) for \(k\leq 40, W_{k}<1.6\) for \(k\leq 200, W_{k}<1.7\) for \(k\leq 1000\).
0 references