Statistical simulation of isotropic random fields on a sphere (Q2755277)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Statistical simulation of isotropic random fields on a sphere |
scientific article; zbMATH DE number 1669751
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Statistical simulation of isotropic random fields on a sphere |
scientific article; zbMATH DE number 1669751 |
Statements
8 November 2001
0 references
isotropic random fields
0 references
sphere
0 references
estimate
0 references
mean square error
0 references
Statistical simulation of isotropic random fields on a sphere (English)
0 references
The authors consider real-valued mean square continuous random fields \(\xi(\theta,\varphi)\), in which are isotropic on the unit sphere in the 3-dimensional space. These fields may be represented in the form NEWLINE\[NEWLINE\xi(\theta,\varphi)=\sum_{m=0}^{\infty}\sum_{l=0}^{m}c_{m,l} P_m^l(\cos (\theta))\left[\zeta_{m,1}^l\cos (l\varphi)+ \zeta_{m,2}^l\sin (l\varphi) \right], NEWLINE\]NEWLINE where \(\{\zeta_{m,k}^l\},k=1,2\), are sequences of uncorrelated random variables. To approximate the fields the authors use partial sums of the form NEWLINE\[NEWLINE\xi_N(\theta,\varphi)=\sum_{m=0}^N\sum_{l=0}^{m}c_{m,l} P_m^l(\cos (\theta))\left[\zeta_{m,1}^l\cos (l\varphi)+ \zeta_{m,2}^l\sin (l\varphi) \right]. NEWLINE\]NEWLINE The mean square error of this approximation is estimated.
0 references