Initial-boundary value problems for the generalized \(n\)-dimensional IMB\({}_q\) equation (Q2755687)

From MaRDI portal





scientific article; zbMATH DE number 1671593
Language Label Description Also known as
English
Initial-boundary value problems for the generalized \(n\)-dimensional IMB\({}_q\) equation
scientific article; zbMATH DE number 1671593

    Statements

    0 references
    0 references
    0 references
    26 February 2002
    0 references
    local existence and uniqueness
    0 references
    classical and generalized solution
    0 references
    blowing up of solutions
    0 references
    Initial-boundary value problems for the generalized \(n\)-dimensional IMB\({}_q\) equation (English)
    0 references
    The paper concerns the initial-boundary value problem for the \(\text{IMB}_q\) equation NEWLINE\[NEWLINE\begin{cases} u_{tt}-\nabla^2u_{tt}- \nabla^2u= \nabla^2g(u),\quad (x,t)\in \Omega\times (0,T),\\ u(x,t)=0,\quad (x,t)\in\partial \Omega\times [0,T),\\ u(x, 0)= \varphi(x),\quad u_t(x,0)= \psi(x),\quad x\in\overline \Omega. \end{cases}NEWLINE\]NEWLINE The local existence and uniqueness for both classical and generalized solution are studied. Besides, a sufficient condition for blowing up of solutions is also given.
    0 references
    0 references

    Identifiers