Generalized Riemann Hilbert boundary value problem. (Q2756005)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Generalized Riemann Hilbert boundary value problem. |
scientific article; zbMATH DE number 1672323
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Generalized Riemann Hilbert boundary value problem. |
scientific article; zbMATH DE number 1672323 |
Statements
12 November 2001
0 references
Generalized Riemann Hilbert boundary value problem. (English)
0 references
For \(L\) a simple closed rectifiable curve dividing the complex plane \(\mathbb C\) into domains \(D^+\) and \(D^-\), NEWLINE\[NEWLINE(S\phi)(t)={1\over\pi i}\int_L{\phi(\tau)-\phi(t)\over\tau-t}d\tau+\phi(t),\quad t\in L,NEWLINE\]NEWLINE \(P=(I+S)/2, Q=(I-S)/2\), the authors consider the operator equation \((A_1PA_2P\cdots A_nP+B_1QB_2Q\cdots B_nQ)\phi=f\). The functions \(A_1,A_2,\cdots,A_n,B_1,B_2,\cdots,B_n\) belong to a certain functional algebra. The authors give an explicit solution of the equation using the theory of the Riemann-Hilbert boundary value problem.
0 references