Blow-up of solutions of semilinear hyperbolic equations in one space dimension (Q2756120)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Blow-up of solutions of semilinear hyperbolic equations in one space dimension |
scientific article; zbMATH DE number 1672555
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Blow-up of solutions of semilinear hyperbolic equations in one space dimension |
scientific article; zbMATH DE number 1672555 |
Statements
12 November 2001
0 references
maximal influence domain
0 references
0.99999994
0 references
0.95349264
0 references
0.95258856
0 references
0.9333494
0 references
0.9327943
0 references
0.93058914
0 references
Blow-up of solutions of semilinear hyperbolic equations in one space dimension (English)
0 references
The paper deals with the Cauchy problem NEWLINE\[NEWLINE\partial^2_t u-\partial^2_x u=G(u,u_x,u_t),\;x\in\mathbb{R},\;t>0,NEWLINE\]NEWLINE NEWLINE\[NEWLINE\partial^j_t u=\psi_j,\;x\in \mathbb{R},\;t=0,\;j=0,1,NEWLINE\]NEWLINE where \(G\in C^1(\mathbb{R}^3)\), \(\psi_j\in C^{2-j} (\mathbb{R})\), \(j=0,1\). The author discusses results on the maximal influence domain of solutions of the above Cauchy problem and related mixed problems.
0 references