Blow-up of solutions of semilinear hyperbolic equations in one space dimension (Q2756120)

From MaRDI portal





scientific article; zbMATH DE number 1672555
Language Label Description Also known as
English
Blow-up of solutions of semilinear hyperbolic equations in one space dimension
scientific article; zbMATH DE number 1672555

    Statements

    0 references
    12 November 2001
    0 references
    maximal influence domain
    0 references
    Blow-up of solutions of semilinear hyperbolic equations in one space dimension (English)
    0 references
    The paper deals with the Cauchy problem NEWLINE\[NEWLINE\partial^2_t u-\partial^2_x u=G(u,u_x,u_t),\;x\in\mathbb{R},\;t>0,NEWLINE\]NEWLINE NEWLINE\[NEWLINE\partial^j_t u=\psi_j,\;x\in \mathbb{R},\;t=0,\;j=0,1,NEWLINE\]NEWLINE where \(G\in C^1(\mathbb{R}^3)\), \(\psi_j\in C^{2-j} (\mathbb{R})\), \(j=0,1\). The author discusses results on the maximal influence domain of solutions of the above Cauchy problem and related mixed problems.
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references