Interlacing eigenvalues in time reversible Markov chains (Q2757613)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Interlacing eigenvalues in time reversible Markov chains |
scientific article; zbMATH DE number 1677112
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Interlacing eigenvalues in time reversible Markov chains |
scientific article; zbMATH DE number 1677112 |
Statements
26 November 2001
0 references
Markov chain
0 references
time reversibility
0 references
0.91144824
0 references
0.89703214
0 references
0.8896384
0 references
0.8890976
0 references
0 references
0.8842258
0 references
0.8815999
0 references
0.87848115
0 references
Interlacing eigenvalues in time reversible Markov chains (English)
0 references
For irreducible, reversible, finite state Markov chains the author observes that two sets of eigenvalues related to the transition rate matrix \(Q\), \((\lambda_0,\dots,\lambda_m)\) and \((\nu_1,\dots,\nu_m)\), are interlaced so that \(\lambda_0<\nu_1<\lambda_1<\cdots< \gamma_m< \lambda_m\). Many quantities associated with \({\mathcal L}_\pi T_A\), the distribution of the first time to \(A\) starting in steady state, can be expressed in terms of these eigenvalues, and the interlacing property can be exploited to obtain approximations.
0 references