Total transversal scalar curvatures of Hopf \(\alpha\)-foliations (Q2758280)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Total transversal scalar curvatures of Hopf \(\alpha\)-foliations |
scientific article; zbMATH DE number 1679658
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Total transversal scalar curvatures of Hopf \(\alpha\)-foliations |
scientific article; zbMATH DE number 1679658 |
Statements
7 January 2004
0 references
Hopf foliation on \(S^{3}\)
0 references
total transversal scalar curvature
0 references
foliated Riemannian manifold
0 references
0 references
0.8966171
0 references
0.8895273
0 references
0.8869853
0 references
0.88569355
0 references
0.8853165
0 references
0.8835707
0 references
Total transversal scalar curvatures of Hopf \(\alpha\)-foliations (English)
0 references
The author computes the total transversal scalar curvature of a Hopf \(\alpha\)-foliation \(\mathcal{F}^{\alpha}\) on the unit 3-sphere \(S^{3}\) and shows that it is equal to \(16 \pi ^{2}\) and it is independent on \(\alpha\). On the other hand, if \( \alpha , \beta \geq 1\) and \(\alpha \neq \beta\) , then the foliations \(\mathcal{F}^{\alpha}\) and \(\mathcal{F}^{\beta}\) are not isospectral.
0 references