Coloring \({\mathbb R}^n\) (Q2759050)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Coloring \({\mathbb R}^n\) |
scientific article; zbMATH DE number 1680708
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Coloring \({\mathbb R}^n\) |
scientific article; zbMATH DE number 1680708 |
Statements
10 December 2001
0 references
graph coloring
0 references
Euclidean spaces
0 references
Coloring \({\mathbb R}^n\) (English)
0 references
It is shown that there exists a function \(\varphi:{\mathbb R}^n\to\omega\) such that for any isometry \(\alpha:{\mathbb R}^n\to {\mathbb R}^n\) the restriction of \(\varphi\) to \(\alpha[{\mathbb Q}^n]\) is a bijection onto \(\omega\). This theorem, generalizing the reviewer's result for \(n=2\) [\textit{P. Komjáth}: ``A coloring result for the plane'', J. Appl. Anal. 5, 113-117 (1999; Zbl 0933.03053)] is further extended to certain subrings of \({\mathbb R}\).
0 references