Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for \(H^1\)-stability of the \(L^2\)-projection onto finite element spaces (Q2759090)

From MaRDI portal





scientific article; zbMATH DE number 1680745
Language Label Description Also known as
English
Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for \(H^1\)-stability of the \(L^2\)-projection onto finite element spaces
scientific article; zbMATH DE number 1680745

    Statements

    0 references
    10 December 2001
    0 references
    finite element methods
    0 references
    \(H^1\)-stability
    0 references
    \(L^2\)-projection
    0 references
    nonconforming finite element schemes
    0 references
    Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for \(H^1\)-stability of the \(L^2\)-projection onto finite element spaces (English)
    0 references
    The author presents a more flexible version of the Bramble-Pasciak-Steinbach criterion [see \textit{J. H. Bramble, J. E. Pasciak} and \textit{O. Steinbach}, ibid. 71, No. 237, 147-156 (2002; reviewed above)] for \(H^1\)-stability of the \(L^2\)-projection onto finite element spaces. This criterion is applicable to all kinds of finite element spaces including nonconforming finite element spaces. Some examples are given where the Bramble-Pasciak-Steinbach criterion or the Crouzeix-Thomée criterion [see \textit{M. Crouzeix} and \textit{V. Thomée}, ibid. Math. Comput. 48, 521-532 (1987; Zbl 0637.41034)] is not applicable but the new modified Bramble-Pasciak-Steinbach criterion guarantees \(H^1\)-stability.
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references