On spaces of analytic functions of several variables (Q2759399)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On spaces of analytic functions of several variables |
scientific article; zbMATH DE number 1681801
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On spaces of analytic functions of several variables |
scientific article; zbMATH DE number 1681801 |
Statements
12 December 2001
0 references
spaces of analytic functions of several variables
0 references
topological isomorphism
0 references
locally convex spaces
0 references
holomorphic functions
0 references
entire functions
0 references
abstract analytic space
0 references
On spaces of analytic functions of several variables (English)
0 references
This paper deals with topological isomorphism between some locally convex spaces of holomorphic or entire functions of several complex variables and abstract analytic spaces. NEWLINENEWLINENEWLINELet the series \(\sum_{k\in\mathbb{Z}_{+}^{n}}f_{k}z^{k}=\sum_{k\in K_{f}}f_{k}z^{k_1}_1\ldots z_{n}^{k_{n}}\) \((K_{f}=\{k\in\mathbb{Z}_{+}^{n}:f_{k}\neq 0\})\) have a non-empty convergence domain \(D(f)\subset\mathbb{C}^{n}\), i.e. represents the function \(f=(f_{k})\) holomorphic in \(0\in\mathbb{C}^{n}\). We denote by \(\overline A_0\) the set of all functions \(f\) holomorphic in \(0\). Let \(\Phi=\{\Phi_{k}:\mathbb{R}_{+}\to\overline\mathbb{R}_{+}, k\in\mathbb{Z}_{+}^{n}\}\) be a characteristic, and let \(\chi_{\Phi}^{f}:\Sigma_{+}\to \overline\mathbb{R}_{+}\) be directed \(\Phi\)-characteristic, \(\chi_{\Phi}^{f}(a)=\lim_{\pi(k)\to a}\Phi_{k}(|f_{k}|)\), if \(a\in \Sigma_{K_{f}}\), and \(\chi_{\Phi}^{f}(a)=-\infty\), if \(a\in \Sigma_{+}\setminus\Sigma_{K_{f}}\), \(\pi(k)=k/\|k\|, k\in\mathbb{Z}_{+}^{n}\). The hypersurface \(S_{f}\) of conjugate \((\Phi,\Psi)\)-characteristics of the function \(f\) is defined by NEWLINE\[NEWLINES_{f}=\Bigl\{r\in D_{\Psi}:\max_{a\in\Sigma_{+}}\chi_{\Phi}^{f}(a)\nu(\langle\beta(a),\eta^{-1}(r)\rangle)=1\Bigr\}=\partial[\eta(H_{\Phi}^{f}\cap\Delta_{\Psi})],NEWLINE\]NEWLINE where \(\eta\) is a homeomorphism of the convex domain \(\Delta_{\Psi}\subset\mathbb{R}^{n}\) on the domain \(D_{\Psi}\subset\mathbb{R}^{n}\); \(\nu:]a,b[\to \widehat\mathbb{R}\) and \(\beta:\Sigma_{+}\to\mathbb{R}^{n}\setminus\{0\}\) are homeomorphic mappings such that \(\langle\pi(\beta(a)),a\rangle>0,\;a\in \Sigma_{+}\), \(\inf\{\langle\beta(a),\xi\rangle:\xi\in\Delta_{\Psi}\}=a\), \(\sup\{\langle\beta(a),\xi\rangle:\xi\in\Delta_{\Psi}\}=b\), \(H_{\Phi}^{f}:=\bigcap_{0<\chi_{\Phi}^{f}(a)<\infty}\{\xi\in\mathbb{R}^{n}:\nu(\langle\beta(a),\xi\rangle)\leq 1/\chi_{\Phi}^{f}(a)\}\). Let us continue \(\nu\) to the homeomorphism \(\tilde\nu:[a,b]\to\overline\mathbb{R}^{n}_{+}\). Let \(\gamma\) be a fixed function from \(\overline A_0\) and let \(\Omega\) be the interior of the set \(\eta(H_{\Phi}^{\gamma}\cap\Delta_{\Psi})\), \(\Omega\neq\emptyset\) and \(\Omega\neq\eta(\Delta_{\Psi})=D_{\Psi}\). Let us denote by \(h\) the support function of the convex set \(\eta^{-1}(\Omega)\), and let us introduce subspaces \(A_{\Phi}[\Omega]\) and \(A_{\Phi}[\Omega)\) of the vector space \(\overline A_0\) in such manner: \(f\in A_{\Phi}[\Omega]\), (\(f\in A_{\Phi}[\Omega)\)) if and only if \(\chi_{\Phi}^{f}\leq 0\) or \(\chi_{\Phi}^{f}<\infty\) and \(S_{f}\cap\Omega=\emptyset\) (\(\chi_{\Phi}^{f}<\infty\) and \(d(S_{f},\Omega)>0\), where \(d\) is the Euclidean metric. NEWLINENEWLINENEWLINEThe author proves that the vector spaces \(A_{\Phi}[\Omega]\) and \(A_{\Phi}[\Omega)\) are isomorphic respectively to abstract analytic spaces \(A_{\Phi}(\varphi)\) and \(\overline{A}_{\Phi}(\varphi)\), where \(\varphi(a)=1/\widetilde\nu(\varepsilon h(\varepsilon\beta(a))), a\in\Sigma_{+}\), \(\varepsilon=+1\) or \(\varepsilon=-1\) depending on either function \(\nu\) is increasing or decreasing respectively. If \(\Omega=D_{\Psi}\), then \(\varphi(a)\equiv 0\), if \(\Omega=\emptyset\), then \(\varphi(a)\equiv+\infty\). The author also proves that spaces \(A_{\Phi}[\Omega]\) and \(A_{\Phi}[\Omega)\) are inductive and projective limit of a sequence of Banach spaces respectively. Examples of the corresponding spaces and characteristics are presented.
0 references