Poisson-Hermite representation of solutions for the equation \(\frac{\partial^2}{\partial t^2}u(x,t)+\Delta_x u(x,t)-2x\cdot\nabla_x u(x,t)=0\) (Q2761429)

From MaRDI portal





scientific article; zbMATH DE number 1683537
Language Label Description Also known as
English
Poisson-Hermite representation of solutions for the equation \(\frac{\partial^2}{\partial t^2}u(x,t)+\Delta_x u(x,t)-2x\cdot\nabla_x u(x,t)=0\)
scientific article; zbMATH DE number 1683537

    Statements

    0 references
    0 references
    30 May 2002
    0 references
    Gauß measure
    0 references
    maximal function
    0 references
    Poisson-Hermite integral
    0 references
    Hermite expansion
    0 references
    harmonic oscillation
    0 references
    Poisson-Hermite representation of solutions for the equation \(\frac{\partial^2}{\partial t^2}u(x,t)+\Delta_x u(x,t)-2x\cdot\nabla_x u(x,t)=0\) (English)
    0 references
    The authors characterize solutions of the equation NEWLINE\[NEWLINE\left( {\partial^2 \over\partial t^2}+ \Delta_x\right) u-2x\cdot \nabla_xu=0NEWLINE\]NEWLINE by using the Poisson-Hermite integral in the weighted \(L^p\)-space \(L^p(\gamma_n)\), \(\gamma_n (dx)={1\over \pi^{w_2}} e^{-|x|^2}dx\).NEWLINENEWLINEFor the entire collection see [Zbl 0970.00036].
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references