Conjugation boundary value problem and associated equations of nonlinear waves. I (Q2761536)

From MaRDI portal





scientific article; zbMATH DE number 1685521
Language Label Description Also known as
English
Conjugation boundary value problem and associated equations of nonlinear waves. I
scientific article; zbMATH DE number 1685521

    Statements

    0 references
    0 references
    0 references
    6 January 2002
    0 references
    conjugation boundary value problem
    0 references
    semilinear parabolic type equation
    0 references
    nonlinear waves
    0 references
    Conjugation boundary value problem and associated equations of nonlinear waves. I (English)
    0 references
    Let \(\Omega\subset \mathbb{R}^{n}\), \(\Omega=\Omega_1\cup\Omega_2\), \(\overline\Omega_1\cap\overline\Omega_2=l\), where \(l\) is a smooth hypersurface in \(\mathbb{R}^{n}\). The authors study the conjugation problem for the semilinear parabolic type partial differential equation \(u_{t}=L^{(i)}u+F_{i}(u,u_{x})\), \(i=1,2\) with boundary conditions \(u|_{t=t_0}=\phi_{i}(x)\), \(x\in\Omega_{i}\), \(i=1,2\); continuity conditions on \(l\subset \mathbb{R}^{n}:\) NEWLINE\[NEWLINE\lim_{x\to x_0\in l}u(t;x)|_{x\in\Omega_1}=\lim_{x\to x_0\in l}u(t;x)|_{x\in\Omega_2},NEWLINE\]NEWLINE NEWLINE\[NEWLINE\lim_{x\to x_0\in l}\langle A^{(1)}\vec n_{x},{\text{grad}} u \rangle|_{x\in\Omega_1}=\lim_{x\to x_0\in l}\langle A^{(2)}\vec n_{x},{\text{grad}} u \rangle|_{x\in\Omega_2}NEWLINE\]NEWLINE for any \(x_0\in l\), where \(\vec n_{x}\) is a unit vector of normal to \(l\) at the point \(x\in l\). Here \(L^{(i)}=\langle\vec\partial, A^{(i)}\vec\partial\rangle,\;i=1,2\) are elliptic differential operators with constant coefficients; \(F_{i}\in C^{(1)}, i=1,2\) are some Fréchet differentiable nonlinear mappings. The existence and uniqueness of solution of the corresponding Cauchy problem is obtained. The problem of existence and propagation of ``wave'' solution is discussed. NEWLINENEWLINENEWLINEFor part II see ibid., 5, 171-181 (2000; Zbl 0979.35080).
    0 references

    Identifiers