Spectral theory of Dirac operator in regular case for piecewise homogeneous segment (Q2761558)

From MaRDI portal





scientific article; zbMATH DE number 1685538
Language Label Description Also known as
English
Spectral theory of Dirac operator in regular case for piecewise homogeneous segment
scientific article; zbMATH DE number 1685538

    Statements

    6 January 2002
    0 references
    spectral theory
    0 references
    Dirac operator
    0 references
    piecewise homogeneous segment
    0 references
    expansion by eigenfunctions
    0 references
    integral transform
    0 references
    0 references
    Spectral theory of Dirac operator in regular case for piecewise homogeneous segment (English)
    0 references
    The author deals with some problems of spectral theory for the Dirac operator defined by the Sturm-Liouville problem on the set \(I_{n}=\{x:x\in \bigcup_{j=1}^{n+1}(l_{j-1},l_{j})\), \(l_0\geq 0\), \(l_{j}<l_{j+1}\), \(j=1,\ldots,n\), \(l_{n+1}=l\}\) NEWLINE\[NEWLINE\left(\begin{matrix} 0&1\\ 1&0\end{matrix}\right){dv^{j}\over dx}+\left(\begin{matrix} p^{j}(x)&q^{j}(x)\\ q^{j}(x)&-p^{j}(x)\end{matrix}\right)v^{j}=\lambda v^{j},\qquad v^{j}=\left(\begin{matrix} v^{j}_{1}\\ v^{j}_2\end{matrix}\right),NEWLINE\]NEWLINE with the boundary conditions \((\alpha_{11}^0,\beta_{11}^0)v^1|_{x=l_0}=0\), \((\alpha_{22}^{n+1},\beta_{22}^{n+1})v^{n+1}|_{x=l}=0\) and the conjunction conditions NEWLINE\[NEWLINE\left(\begin{matrix} \alpha_{11}^{k}&\beta_{11}^{k}\\ \alpha_{21}^{k}&\beta_{21}^{k}\end{matrix}\right)v^{k}= \left(\begin{matrix} \alpha_{12}^{k}&\beta_{12}^{k}\\ \alpha_{22}^{k}&\beta_{22}^{k} \end{matrix}\right)v^{k+1},\quad x=l_{k},\quad k=1,\ldots,n+1.NEWLINE\]NEWLINE The author considers an expansion by eigenfunctions and the fundamental identity of an integral transform of the Dirac operator.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references