\(\mathfrak V\)-Cat is locally presentable or locally bounded if \(\mathfrak V\) is so (Q2761575)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(\mathfrak V\)-Cat is locally presentable or locally bounded if \(\mathfrak V\) is so |
scientific article; zbMATH DE number 1685987
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(\mathfrak V\)-Cat is locally presentable or locally bounded if \(\mathfrak V\) is so |
scientific article; zbMATH DE number 1685987 |
Statements
8 January 2002
0 references
locally presentable
0 references
locally bounded
0 references
enriched category
0 references
\(\mathfrak V\)-Cat is locally presentable or locally bounded if \(\mathfrak V\) is so (English)
0 references
It is well known that the category of categories is locally finitely presentable. This paper obtains the same result, and variants, for the category of categories enriched in a locally finitely presentable closed monoidal category.
0 references