The existence of a symmetric global minimizer on \(\mathbb{R}^{n-1}\) implies the existence of a counter-example to a conjecture of De Giorgi in \(\mathbb{R}^n\) (Q2761867)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The existence of a symmetric global minimizer on \(\mathbb{R}^{n-1}\) implies the existence of a counter-example to a conjecture of De Giorgi in \(\mathbb{R}^n\) |
scientific article; zbMATH DE number 1686426
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The existence of a symmetric global minimizer on \(\mathbb{R}^{n-1}\) implies the existence of a counter-example to a conjecture of De Giorgi in \(\mathbb{R}^n\) |
scientific article; zbMATH DE number 1686426 |
Statements
6 February 2003
0 references
semilinear elliptic equations
0 references
nontrivial monotone solutions
0 references
nonplanar monotone solution
0 references
0.8522171
0 references
0.8313042
0 references
0.8257613
0 references
0.8254977
0 references
0 references
0.8196635
0 references
0.81732315
0 references
0.8148557
0 references
The existence of a symmetric global minimizer on \(\mathbb{R}^{n-1}\) implies the existence of a counter-example to a conjecture of De Giorgi in \(\mathbb{R}^n\) (English)
0 references