Finsler connections in anholonomic geometry of a Kropina space (Q2763902)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Finsler connections in anholonomic geometry of a Kropina space |
scientific article; zbMATH DE number 1693374
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Finsler connections in anholonomic geometry of a Kropina space |
scientific article; zbMATH DE number 1693374 |
Statements
25 April 2002
0 references
Holland's frame
0 references
Randers space
0 references
Finsler space
0 references
Kropina space
0 references
0 references
Finsler connections in anholonomic geometry of a Kropina space (English)
0 references
This is a continuation of two papers: \textit{D. Hrimiuc} and \textit{H. Shimada}, Nonlinear World 3, No. 4, 613-641 (1996; Zbl 0894.53029) and \textit{P. L. Antonelli} and \textit{I. Bucataru}, in L. Kozma (ed.) et al., Proc. of the Colloquium on differential geometry, Debrecen, Hungary, 2000, 39-54 (2001; Zbl 0985.53018)]. Consider \(\alpha(x,y)= (a_{ij}(x)y^i y^j)^{1/2}\) and \(\beta (x,y) =b_i(x)y^i\) on the tangent bundle \(TM\), and define a Kropina function \(F(x,y)= \alpha^2 (x,y)/ |\beta (x,y)|\). The pair \((M,F)\) is a Finsler space, called Kropina space.
0 references