On the \(L^2\)-norm of periodizations of functions (Q2764646)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the \(L^2\)-norm of periodizations of functions |
scientific article; zbMATH DE number 1690750
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the \(L^2\)-norm of periodizations of functions |
scientific article; zbMATH DE number 1690750 |
Statements
20 October 2002
0 references
periodization
0 references
mixed \(L^2\)-norm
0 references
0 references
0.9129287
0 references
0.9100398
0 references
0.9006524
0 references
0.90008086
0 references
0.89992553
0 references
0.8979867
0 references
On the \(L^2\)-norm of periodizations of functions (English)
0 references
Let \(f\in L^1({\mathbb R}^d)\), \(d\geq 2\), and define its periodization with respect to the lattice \(\rho{\mathbb Z}^d\) (\(\rho \in SO(d)\), a rotation) to be the function NEWLINE\[NEWLINE g_\rho(x) = \sum_{\nu \in {\mathbb Z}^d} f(x-\nu). NEWLINE\]NEWLINE Define the mixed \(L^2\)-norm NEWLINE\[NEWLINE G^2 = \int_{{\mathbb R}^d} \int_{SO(d)} g_\rho(x) ~d\rho~dx. NEWLINE\]NEWLINE In this paper it is first shown how to bound the quantities \(||f||_2\) and \(G\) from each other and the quantity \(||f||_1\): (a) if \(d\geq 4\) one gets \(||f||_2 \leq C_d(G+||f||_1)\), (b) if \(d\geq 5\) one gets that \(G \leq C_d(||f||_2+||f||_1)\).NEWLINENEWLINENEWLINEThese results are then generalized for \(p\) in the range \(1 \leq p < 2d/(d+2)\) as follows: (c) if \(d\geq 4\) then \(||f||_2 \leq C_{d,p}(G+||f||_p)\), and, (d) if \(d\geq 5\) then NEWLINE\[NEWLINE \int_{SO(d)}||g_\rho-\widehat{g}(0)||_2^2~d\rho \leq C_{d,p}(||f||_2 + ||f||_p)^2. NEWLINE\]NEWLINE It is shown that in (d) one cannot remove the subtraction of the integral in the left hand side for \(p>1\).NEWLINENEWLINENEWLINESome further similar inequalities are also mentioned.
0 references