On the well-posedness of the inverse nodal problem (Q2764817)

From MaRDI portal





scientific article; zbMATH DE number 1691020
Language Label Description Also known as
English
On the well-posedness of the inverse nodal problem
scientific article; zbMATH DE number 1691020

    Statements

    On the well-posedness of the inverse nodal problem (English)
    0 references
    0 references
    0 references
    28 October 2002
    0 references
    Sturm-Liouville operator
    0 references
    inverse nodal problem
    0 references
    nodal map
    0 references
    Let \(x_k^{(n)}\), \(0<x_1^{(n)}<\ldots<x_{n-1}^{(n)}<1\), be the nodal points of the \(n\)th eigenfunction of the Sturm-Liouville operator \(H\): NEWLINE\[NEWLINE Hy=-y''+q(x)y,\quad q(x)\in L(0,1), NEWLINE\]NEWLINE NEWLINE\[NEWLINE y(0)\cos\alpha + y'(0)\sin\alpha =0,\quad y(1)\cos\beta + y'(1)\sin\beta =0. NEWLINE\]NEWLINE Here, the inverse nodal problem of recovering \(H\) from the given nodal set \(\{x_k^{(n)}\}\) is considered. The authors study the well-posedness of the inverse nodal problem, i.e., the existence, uniqueness and stability of solutions to this inverse problem.
    0 references

    Identifiers