A note on Simpson's inequality for function of bounded variation (Q2764883)

From MaRDI portal





scientific article; zbMATH DE number 1691095
Language Label Description Also known as
English
A note on Simpson's inequality for function of bounded variation
scientific article; zbMATH DE number 1691095

    Statements

    0 references
    0 references
    24 September 2002
    0 references
    Simpson inequality
    0 references
    integral inequalities
    0 references
    functions of bounded variation
    0 references
    A note on Simpson's inequality for function of bounded variation (English)
    0 references
    The authors establish some generalizations of certain inequalities of Simpson type for functions of bounded variation due to S. S. Daragomir, as well as J. E. Pečarić and S. Varošanec. We quote only the following result: Let \(f:[a,b]\to \mathbb{R}\) be of bounded variation on \([a,b]\) and let \(k\in[{1\over 2},1]\). Then NEWLINE\[NEWLINE\Biggl|\int^b_a f(x) dx+ f\Biggl({a+b\over 2}\Biggr)(2k- 1)(a- b)- (1- k)(b- a)[f(a)+ f(b)]\Biggr|\leq g(k)(b- a)\bigvee^b_a (f),NEWLINE\]NEWLINE where \(g(k)= 1-k\) for \(k\in [{1\over 2}, {3\over k}]\), and \(g(k)= k-{1\over 2}\) for \(k\in [{3\over 4}, 1]\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references