The determinant of square intuitionistic fuzzy matrices (Q2765944)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The determinant of square intuitionistic fuzzy matrices |
scientific article; zbMATH DE number 1695208
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The determinant of square intuitionistic fuzzy matrices |
scientific article; zbMATH DE number 1695208 |
Statements
31 October 2002
0 references
intuitionistic fuzzy matrix
0 references
intuitionistic fuzzy set
0 references
determinant
0 references
Boolean Matrix
0 references
min max semiring
0 references
The determinant of square intuitionistic fuzzy matrices (English)
0 references
The authors introduce the concept of an intuitionistic fuzzy matrix (ifm) and study properties of ifm's. An ifm \({\mathcal A}\) is a matrix of pairs \({\mathcal A}=[(a_{ij}, a'_{ij})]\) of nonnegative reals satisfying \(a_{ij}+a'_{ij}\leq 1\) for all \(i,j.\) The matrix operations \({\mathcal A}+{\mathcal B}=[(a_{ij}\vee b_{ij}, a'_{ij}\wedge b'_{ij})],\) \({\mathcal A}{\mathcal B}=[(\bigvee_k a_{ik}\vee b_{kj}, \bigwedge_k a'_{ik}\wedge b'_{kj})]\) are defined given ifm's \({\mathcal A},{\mathcal B}\) of respectively compatible sizes. The determinant is \(|{\mathcal A}|= [\bigvee_{\sigma \in S_n} a_{1\sigma(1)}\wedge \cdots \wedge a_{n\sigma(n)}, \bigwedge_{\sigma \in S_n} a'_{1\sigma(1)}\vee \cdots \vee a'_{n\sigma(n)})].\) Classical fuzzy matrix theory, see e.g. \textit{J. B. Kim, A. Baartmans} and \textit{N. S. Sahadin} [Fuzzy Sets Syst. 29, No. 3, 349-356 (1989; Zbl 0668.15004)] is obtained from ifm-theory via the correspondence \([(a_{ij})] \leftrightarrow [(a_{ij},1-a_{ij})]\).
0 references