A lower bound of the norm of the operator \(X\to AXB+BXA\) (Q2766069)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A lower bound of the norm of the operator \(X\to AXB+BXA\) |
scientific article; zbMATH DE number 1695320
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A lower bound of the norm of the operator \(X\to AXB+BXA\) |
scientific article; zbMATH DE number 1695320 |
Statements
28 January 2004
0 references
elementary operator
0 references
0.8802799
0 references
0.87130636
0 references
0.8649663
0 references
0.84985197
0 references
0.8468056
0 references
0.8417909
0 references
0.83734685
0 references
A lower bound of the norm of the operator \(X\to AXB+BXA\) (English)
0 references
Let \(H\) denote a complex Hilbert space, \(L(H)\) the \(C^*\)-algebra of all bounded linear operators on \(H\), and \(M_{A,B}\) the operator on \(L(H)\) defined by NEWLINE\[NEWLINEM_{A,B}(X)= AXB,\quad\text{for every }X \in L(H).NEWLINE\]NEWLINE In this paper the authors prove that if \(A,B\in L(H)\) satisfy \(\inf_{\lambda\in \mathbb{C}}\|B-\lambda A\|= \|B\|\) or \(\inf_{\lambda\in \mathbb{C}}\|A-\lambda B\|= \|A\|\), then NEWLINE\[NEWLINE\|M_{A,B}+ M_{B,A}\|\geq \|A\|\|B\|.NEWLINE\]
0 references