A lower bound of the norm of the operator \(X\to AXB+BXA\) (Q2766069)

From MaRDI portal





scientific article; zbMATH DE number 1695320
Language Label Description Also known as
English
A lower bound of the norm of the operator \(X\to AXB+BXA\)
scientific article; zbMATH DE number 1695320

    Statements

    0 references
    0 references
    28 January 2004
    0 references
    elementary operator
    0 references
    A lower bound of the norm of the operator \(X\to AXB+BXA\) (English)
    0 references
    Let \(H\) denote a complex Hilbert space, \(L(H)\) the \(C^*\)-algebra of all bounded linear operators on \(H\), and \(M_{A,B}\) the operator on \(L(H)\) defined by NEWLINE\[NEWLINEM_{A,B}(X)= AXB,\quad\text{for every }X \in L(H).NEWLINE\]NEWLINE In this paper the authors prove that if \(A,B\in L(H)\) satisfy \(\inf_{\lambda\in \mathbb{C}}\|B-\lambda A\|= \|B\|\) or \(\inf_{\lambda\in \mathbb{C}}\|A-\lambda B\|= \|A\|\), then NEWLINE\[NEWLINE\|M_{A,B}+ M_{B,A}\|\geq \|A\|\|B\|.NEWLINE\]
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references